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Abstract: To improve imaging speed, multifocal excitation is widely adopted as a parallel
strategy in laser-scanning microscopy. Specifically, axial multifocal microscopy is popular in
neuroscience as it enables functional imaging of neurons in multiple depths simultaneously.
However, previous phase searching algorithms for axial multi-foci generation generally generate
foci of uniform intensities, which cannot compensate the scattering-induced power loss in deep
tissue and causes inhomogeneous excitation. Here, we propose a novel adaptive optimization-
based phase-searching method (AdaPS) to generate axial multi-foci with arbitrary intensity
modulations for scattering-induced loss compensation. By adopting AdaptiveMoment Estimation
(Adam) as the searching algorithm, our method could escape from unsatisfactory local minima
and stably converge to the optimal phase pattern with errors at least an order of magnitude lower.
We validate AdaPS through both numerical simulations and experiments and demonstrate that
AdaPS could provide uniform multi-depth imaging in scattering phantom and enable high-fidelity
multi-depth recordings of neural network dynamics in mouse brain in vivo.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Laser scanning microscopy has achieved great success in imaging and laser writing process
[1,2]. However, hindered by the innate inertia of the mechanical scanners, laser scanning
microscopy could not steer the focus rapidly [3], which limits its applications in high speed
scenarios. Compared to the standard single focus scanning microscopy, multifocal scanning
microscopy enables parallel access to the samples and thus improves the volumetric rate by
many folds. Multifocal scanning microscopy is now widely applied in fluorescence imaging [4],
Raman scattering microscopy [5], photostimulation [6], super-resolution microscopy [7] and
two-photon polymerization [8]. In terms of spatial distribution of the foci, multifocal scanning
microscopy can be divided into three different types, that is lateral [9], axial [10] and hybrid [11].
Among them, axial multifocal microscopy is particularly popular and holds great potentials in
functional imaging and optogenetic photo-stimulation in neuroscience. Compared with Bessel
beam microscopy [12,13] which also extends the axial excitation range, multifocal microscopy is
more energy-efficient and suffers less background because it has no sidelobes [12]. Recently,
axial multi-foci has been used for investigating cross-layer neural activities [14] and stimulating
neural ensembles [15].
To achieve axial multifocal excitation, there are generally two strategies. The first strategy is

spatio-temporal multiplexing, i.e. splitting the beam into multiple beamlets spatially before the
objective, then modulating the wavefront of each beamlet and guiding them through the objective
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to form multiple foci [16]. Such a strategy necessitates several extra beam splitters to split the
beam, which increases the system complexity and is lack of flexibility. The second strategy
employs a spatial light modulator (SLM), conjugated to the entrance pupil of the objective to
control the beam phase for axial multi-foci generation. Such a method is easy to set up and
the focal distribution (including number, position, and intensity) are flexible to adjust by phase
modulation, which is more versatile among various applications.

However, considering ideal focal distribution needs both amplitude and phase modulation, it is
non-trivial to get such a phase for the generation of expected multi-foci using common phase-only
SLMs. Some algorithms such as Gerchberg–Saxton algorithm (GS) and its modified version,
known as weighted Gerchberg–Saxton algorithm (GSW) and phase-only Gerchberg–Saxton
algorithm (GSP), could generate multi-foci in 3D space with relatively uniform intensity
distribution [10,17,18]. Nevertheless, these algorithms could not flexibly control the intensities
of each focus, which hampers the application of multi-foci in deep tissue imaging, where power
loss of the excitation laser induced by tissue scattering should be considered. Due to the
heterogeneous refractive index of neurons, glia and blood vessels, a tight Gaussian focus would
lose its energy exponentially as the penetration depth increases according to the Beer-Lambert law
[19]. As a consequence, when applying multi-foci generated by the aforementioned algorithms
in functional imaging of neural circuits, signals from the deeper layers would degrade severely.
The different signal-to-noise ratios (SNRs) between different layers would result in the omission
or misidentification of neurons, as well as the distortion of fluorescent dynamics. Methods like
amplitude Gerchberg-Saxton algorithm (GSA) can modulate multi-foci more accurately but it
relies on complex modulation [10], which reduce the laser power utilization efficiency when
adjusting the beam amplitude [20]. Other intuitive methods, for instance, tuning the coefficients
of Zernike polynomials for each focus to control the energy, could be time-consuming [14].

Here we propose an adaptive optimization-based phase-searchingmethod (AdaPS) to effectively
search the phases for the generation of axial multi-foci with flexible intensity control. AdaPS
is based on a framework of stochastic optimization and Adam optimizer [21] is adopted to
guarantee fast and accurate convergence. We theoretically prove that AdaPS would work better
than previous GSW-kind methods and further analyze the influences of three factors (focus
number, focus interval, and scattering length) through statistical analysis. We also set up a
multifocal two-photon microscope and compare AdaPS with previous algorithms to show its
superior performances. We demonstrate the capability of AdaPS in uniform multi-depth imaging
of scattering phantom and high-fidelity recordings of neural network dynamics in mouse brain in
vivo.

2. Methods

In this section, we derive the proposed algorithm for the generation of axial multi-foci with
flexible intensity control. We also derive the GSW algorithm with the same notations to show
that AdaPS would guarantee better solutions theoretically. We start with setting up a model to
describe the interactions between the phase at the objective entrance pupil and the corresponding
field distribution in the focal space, as shown in Figs. 1(a) and (b). We assume the optical field at
the entrance pupil of the objective could be written as

E0(r0, θ0) = e−
(

r0
ω0

)2
eiφ(r0, θ0), (1)

whereω0 is the incident beamwaist and (r0, θ0) is the polar coordinate on the entrance pupil plane.
Since the generated field distribution should be circular symmetric, we assume φ(r0, θ0) = φ(r0).
Through Fresnel propagation in low numerical aperture conditions, the optical field in the focal
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space is

E1(r1, θ1) =
eikf

iλf
∫
2π
0 ∫

∞
0 r0E0e−

ik
f r0r1 cos(θ0−θ1)e

ik
2f (r

2
0+r21)dr0dθ0, (2)

where (r1, θ1) is the coordinate on the objective plane, f is the focal length of the objective and
k = 2π/λ is the wave number. After adding the lens modulation term exp(ikr21/2f ), the field
E1(r1, θ1) propagates further to f + ∆z after the objective

E2(r2, θ2, ∆z)

=
eik(f+∆z)

iλ(f + ∆z)

∫ 2π

0

∫ ∞

0
r1E1e−

ik
(f+∆z) r1r2 cos(θ1−θ2)e

ikr21
2f e

ik
2(f+∆z) (r

2
1+r22)dr1dθ1.

(3)

By using Gaussian integral, E2(r2, θ2, ∆z) could be finally simplified as

E2(r2, θ2, ∆z) = E2(r2, ∆z) ∝ ∫∞0 r0e
−

(
r0
ω0

)2
eiφ(r0)e

ik0
(
∆z

r20
2f2

)
J0

(
−

k0r0r2
f

)
dr0, (4)

where J0 is the zero-order Bessel function of the first kind [22].
To get the discretization model for numerical simulation, we need to evaluate the integral

at discrete points {r0, m} on the entrance pupil plane and {r2, m} on the focal plane. Besides,
discretized functions in such discrete grids should faithfully approximate the value of the
corresponding continuous function. For a finite spatial range [0, R] on the focal plane, the
sampling points on the pupil and focal plane should be

r0, m =
j0, m

R
f
k0
, m = 1, . . . ,M − 1,

r2, m =
j0, m

j0, M
R, m = 1, . . . ,M − 1, (5)

where j0, m is the m-th zeros of J0 [23]. The forward model in Eq. (4) could be written as discrete
Hankel transform [23]

E2(∆z) = Y[p(∆z) � Φ], (6)

and elements of Y, p and Φ are

Ym, n =
2

j0,MJ21(j0, n)
J0

(
j0, mj0, n

j0, M

)
,

pm(∆z) = e−
( r0, m

ω0

)2
e

ik0

(
∆z

r20, m
2f2

)
,

Φm = eiφm . (7)

Here � means Hadamard product. Note that Y is an orthogonal matrix, which means YTY =
YYT = I.

Our goal is to generate L foci at axial positions {∆zl}l=1, ..., L, of which the corresponding
intensities should be {ul}l=1, ..., L (in two-photon scenario). InGSW, a desired intensity distribution
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Etarget(∆z) is used to control the iteration process. We could define Etarget(∆z) as

Etarget(∆zl) =


u1/4l , for r2, m =

j0,1
j0, M

R

0, others.
(8)

The GSW algorithm is then used to generate the desired intensity distribution by maximizing the
energy efficiency, i.e. the total intensity at target axial positions {∆zl}l=1, ..., L

argmin
Φ
−

∑L

l=1
| |E2(∆zl)| |

4. (9)

And meanwhile, the similarity between the intensities of generated foci and the target Etarget(∆z)
is also taken into consideration. In this step, a group of weights denoted by {wl}l=1, ..., L are
introduced to guarantee that the generated foci have the specified intensity distribution Etarget(∆zl).
The axial GSW algorithm for multifocal generation could be written as

Because the problem in Eq. (9) is not convex [17], in each step (i.e. an iteration in Algorithm 1)
the GSW algorithm alternatively fix Φ1, . . . , Φm−1, Φm+1, . . . , ΦM−1 and use gradient descent
method to solve arg min −

∑L
l=1 wl | |E2(∆zl)| |

4 for m = 1, . . . ,M − 1 [24]. The performance of
such optimization methods severely relies on the initial value and is very easy to be stuck in local
minima.
Different from GSW, we explicitly decouple the energy efficiency term and the distribution

penalty term (the uniformity of weighted focal intensities) in the loss function

argmin
Φ

F(φ) = −
∑L

l=1
| |E2(∆zl)| |

4 + ρ
max l | |E2(∆zl)| |

4/ul

minl | |E2(∆zl)| |4/ul
. (10)

The second term guarantees that after adding extra weights ul to each focus, all the foci should
have specified intensities. ρ is a hand-tuned constant to adjust regularization. The optimization
problem is still non-convex. To avoid oscillation and being stuck in local minima, we use Adam,
an adaptive optimization method that applies adaptive learning rates for each parameter, as well
as estimating the lower-order moments to accelerate convergence [21]. The algorithm flow chart
is shown below



Research Article Vol. 27, No. 24 / 25 November 2019 / Optics Express 35952

Here ∇φ F(t)(φ(t)) could be implemented by numerical gradients at t-th iteration. Thanks to
the nature of adaptive optimization and the additional bias-corrected moments (m̂(t) and v̂(t)),
Adam optimizer could not only escape from local minima and saddle points but also guarantee a
dramatically fast convergence [21,25], which leads AdaPS to a better solution compared to GSW
theoretically.
The operating workflow of AdaPS is schematized in Fig. 1(c) and can be summarized as

3 steps. Firstly, the phase is randomly initialized and a Fresnel propagation-based forward
model is applied to calculate the optical field near the focal plane of the objective [Eq. (6)].
Secondly, current optical field is compared with the target field and an error is calculated through
a predefined loss function [Eq. (10)]. Finally, Adam optimizer is utilized to minimize the loss
function (Algorithm 2). This process iterates repeatedly until the specified number of iterations is
reached. Our code is made publicly available on Github (https://github.com/Xinyang-Li/AdaPS).

Fig. 1. Overview of the principles of AdaPS. (a) Schematic for calculating the light field
near the focal plane of the objective. (b) An optimized phase pattern displayed on the SLM
is conjugated to the entrance pupil plane of the objective, and then multi-foci is generated in
different depths. (c) The workflow of our Adam-based technique: I. A random phase pattern
is initialized and the corresponding light field in focal space is calculated through a forward
model; II. A loss is calculated to represent the difference between current focal field and
final target; III. Adam optimizer is applied to update the phase until the loss converges.

https://github.com/Xinyang-Li/AdaPS
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Fig. 2. Simulation results of multifocal generation with intensity modulation by GSW and
our proposed method. For each method, the first column shows the generated phase, and the
second column shows the corresponding axial intensity by two-photon excitation (L = 3 ∼ 8,
∆zl = 50 µm, s = 400 µm). The red curve shows the target intensity distribution, generated
by the Beer-Lambert law.

3. Simulations

To test the performance of AdaPS, we perform numerical simulations with different focus numbers
(L), focus intervals (∆zl), and scattering lengths (s) in two-photon scenario. The algorithms are
implemented under Python 3.6.
For two-photon excitation in scattering media, the effective excitation power decays expo-

nentially with the penetration depth, which is quantified by scattering length (or scattering
mean-free-path) [26]. In the simulation, we suppose the scattering length s = 400 µm. With
focus interval ∆zl = 50 µm, the target two-photon intensity of focus l (of total focus number L) is
ul = e

2(l−1)
s ∆zl . We then run Algorithm 1 and Algorithm 2 with focus number from 3 to 8 to check

the results, as shown in Fig. 2. Since the performance of GSW is closely relevant to the initial
phase, we conduct 30 independent trials repeatedly and select the one with minimal loss to show
in Fig. 2. Under the same focus number and specified intensity requirement, focal distribution
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generated by AdaPS could exactly match the expected exponential curves (red dashed curves),
while GSW method has larger deviations. As the focus number increases, the optimization
problem becomes more complicated. GSW tends to perform worse because it is more likely to
be trapped in local minima and saddle points.

Although there are differences between the objective functions and optimization algorithms of
the two methods, the superiority of AdaPS can still be visualized quantitatively. We introduce
the “trend error”, defined by err(L) = maxl

ûl
ul
/minl

ûl
ul
, where ul is the expected two-photon focal

intensity and ûl is the actual focal peak intensity after optimization. The minimal value of err(L)
is 1 when maxl

ûl
ul
= minl

ûl
ul
, which further means that the focal intensity is strictly consistent

with the target. Otherwise, the larger the error, the greater the deviation is. We initialize two
algorithms with the same random phase and plot the decline curves of err(L), as shown in
Fig. 3(a). It is clear that our Adam-based method can robustly converge to the expected intensity
distribution [err(L) ≈ 1], at least one order of magnitude better than GSW.

Fig. 3. Quantitative analysis of the algorithm performance. (a) Convergence curves of
the trend errors err(L) of GSW and AdaPS. (b) Boxplot of the errors under different focus
numbers (set ∆zl = 50 µm, s = 400 µm). (c) Boxplot of the errors under different focus
intervals (set L=5, s = 400 µm). (d) Boxplot of the errors under different scattering lengths
(set L=5, ∆zl = 50 µm). The data of each set of parameters are obtained from 30 independent
trials repeatedly.

In order to independently analyze the impact of the three factors (L, ∆zl and s) on GSW and
AdaPS, we also conduct independent simulations on each one of them repeatedly, while keeping
the other two constant. For each set of parameters, 30 trials are performed and the boxplots are
shown in Figs. 3(b), 3(c) and 3(d), respectively. The red boxes are the errors of GSW while the
blue boxes at the bottom are the errors of AdaPS. There is a tendency that the performance of
GSW becomes worse and more unstable with the number of foci increasing, the focus interval
increasing, or the scattering length decreasing. Thus, GSW is likely to fail in generating foci of
exponential-increasing intensities to fully compensate the power loss in strong scattering medium.
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In contrast, AdaPS maintains strong stability and small errors in these trials. In most cases, our
Adam-based method guarantees a better solution to this non-convex problem.

4. Experiment results

All procedures involving mice were approved by the Animal Care and Use Committees of
Tsinghua University.

4.1. Experimental validation of flexible intensity control with fluorescent beads

Firstly, we show that the phase searched by our algorithm could be used for generating multi-foci
with desired distributions and intensities. We set up a two-photon microscopy with a SLM, as
shown in Fig. 4(a). Following the beam expander to adjust the beam size, we simply introduce a
SLM (X10468-07, Hamamatsu) to modulate the beam wavefront. The SLM is then conjugated to
the dual axis scanner (LSK-GR08, Thorlabs) via L1 (f1 = 400 mm) and L2 (f2 = 100 mm), which
reduce the beam size to fit the galvo mirror size. The modulated and scanned beam then passes a
scan lens (L3, f3 = 50 mm), a tube lens (L4, f4 = 200 mm) and an objective (XLPLN25XWMP2,
25x, NA1.05) to form multifocal field near the focal plane. To achieve a relatively large focal
range, we underfill the aperture of the objective [14] with effective excitation NA= 0.55. The
measured single focus resolution (FWHM) is 0.66 µm laterally and 6 µm axially calibrated by
200 nm fluorescent beads, as shown in Fig. 4(b).

Fig. 4. (a) Experimental setup of a multifocal microscopy. The femtosecond laser beam is
modulated by a SLM, and then conjugated to the galvo-resonant scanner via a 4f system (L1
and L2, with f1 = 400 mm and f2 = 100mm). The scanner is then conjugated to the entrance
pupil of the objective via scan lens (L3, f3 = 50 mm) and tube lens (L4, f4 = 200 mm). The
modulated beam finally forms multifocal excitation near the focal plane. Inset À shows an
example SLM phase. Inset Á shows the corresponding multi-foci of exponential-increasing
intensities. (b) Lateral (top row) and axial (bottom row) resolution calibration. Scale bar, 1
µm.

To experimentally validate our proposed method, we load the generated phase in Fig. 2(a) onto
the SLM, then drive the objective by a piezo scanner to make the fluorescent spheres excited by
each focus. To eliminate the influence of unstable factors, such as noise and photobleaching,
we extract axial intensities of all 8 beads in the field-of-view (FOV). The statistical results are
shown in Fig. 5. We also plot a typical intensity profile of a specified bead in each panel to show
the overall intensity distribution (blue lines). All axial intensity profiles are normalized to its
corresponding maximum.
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Fig. 5. Performance comparison of GSW and AdaPS on the generation of exponential-
increasing multi-foci (L = 3 ∼ 8, ∆zl = 50 µm, s = 400 µm). (a) Focal intensity with phase
generated by GSW. (b) Focal intensity with phase generated by AdaPS. Orange boxes are the
statistical results of all 8 beads in the FOV; red dashed lines are exponential trend lines; blue
lines are typical axial intensity profiles measured from a specified fluorescent bead.

From Fig. 5, it is clear that the intensity distributions generated by GSW algorithm [Fig. 5(a)]
have large deviations from the required intensity distributions (red dashed lines), while the results
from AdaPS [Fig. 5(b)] is much closer to the expectation. When the focus number is small
(L = 3), GSW and AdaPS have comparable performance. But when it is required to increase the
focus number (L>3), AdaPS shows its superiority. Benefiting from its adaptive learning rates
and momentum term, AdaPS can converge to better solutions and thus keep the deviations at a
very low level regardless of the focus number or expected intensity distribution.

4.2. Uniform multi-depth imaging in scattering phantom

We then show that AdaPS enables uniform axial multi-depth excitation in scattering phantom. We
mix 3 µm fluorescent beads and 0.5 µm non-fluorescent beads homogeneously in a ratio of 1:60,
and then embed the bead mixture at a concentration of 10% in 2% agarose gel to form a scattering
phantom. In order to customize a phase pattern to generate multi-foci of exponential-increasing
intensities, we calibrate the scattering length of the phantom by 14 independent trials. In each
trial, a single focus scans through the whole volume and the averaged fluorescence signals at
each depth are exponentially fitted to estimate the scattering length. The results are shown in
Fig. 6(a). The blue line segments are 95% confidence intervals of each estimation and the red
dashed line is the averaged value of the scattering length (∼350 µm).
We generate 5-foci (L=5, ∆zl = 50 µm, s = 350 µm) of exponential-increasing intensities

through our proposed method to compensate the scattering. The focal intensity is calibrated as
the same procedures in Sec. 4.1, and the corresponding axial two-photon intensity is shown in
Fig. 6(b), as well as the target intensity (dashed red line). To locate the depth of each bead, we
first scan the 5 planes sequentially using a single focus as in conventional multiphoton microscopy
(by loading flat phase onto the SLM). The depth map is shown in Fig. 6(c) that different colors
represent different depths. We then drive the scanner to scan the customized 5-foci laterally
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for simultaneous 5-depth imaging of the scattering phantom. Fluorescent signals from all the
5 planes are captured in parallel, as shown in Fig. 6(d). To show the necessities of scattering
compensation, we also scan the same FOV by 5-foci with the same spatial localizations but
equal excitation power (uniform intensities), as shown in Fig. 6(e). It can be seen that the
image with scattering compensation [Fig. 6(c)] is much more uniform in brightness than that
without [Fig. 6(d)]. The improvement of image contrast is also quantitatively shown in Fig. 6(f),
where two beads with 150 µm axial distance have the same signal strength under scattering
compensation. Also, some detailed structures are shown in Figs. 6(g)–6(i) to indicate that with
the help of our exponential-increasing multi-foci for scattering compensation, structures from
different depths can be clearly revealed in the same contrast.

4.3. High-fidelity multi-layer calcium imaging in mouse brain in vivo

Moreover, we demonstrate that AdaPS enables simultaneous multi-depth functional imaging
in mouse brain in vivo in high fidelity. For mouse preparation, we use wild-type mice at 8-10

Fig. 6. Simultaneous multi-depth imaging in scattering phantom. (a) Scattering length of
the phantom (∼350 µm) is calibrated by 14 independent trials. (b) Axial intensity profile of
the customized 5-foci of exponential-increasing intensities (L = 5, ∆zl = 50 µm, s = 350
µm), measured in the same way as Fig. 5. (c) The depth map of all beads in the FOV, where
5 colors code 5 different depths (0/50/100/150/200 µm). (d) and (e) are the images scanned
by 5-foci of exponential-increasing intensities and uniform intensities, respectively. Scale
bar, 50 µm. (f) Intensity along the lines in (d) and (e), where the two beads located in plane
1 (z = 0 µm) and plane 4 (z = 150 µm) show similar contrast when being excited by our
exponential-increasing 5-foci. (g-i) Detailed structures in (d) and (e), located in plane 5
(z = 2000µm), plane 4 (z = 150 µm), and plane 3 (z = 100 µm), respectively. The loss of
excitation power caused by scattering could be compensated by our exponential-increasing
5-foci. Scale bar, 10 µm.
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postnatal weeks and performed craniotomy above the primary somatosensory cortex (S1). Neuron
populations at Layer 1 and Layer 2/3 are labeled with fluorescent calcium indicator GCaMP6s
[27] through virus infection. After virus injection and optical window implanting, we allow 3-4
weeks for the mice to recover.

For two-photon excitation in mouse brain tissue in vivo, the scattering length is about s = 170
µm at 920 nm [28]. In order to distribute the excitation power to compensate the power loss, a
phase pattern is customized through AdaPS to generate 4-foci of exponential-increasing intensities
and the focus interval is set as 60 µm (L=4, ∆zl = 60 µm, s = 170 µm). The two-photon intensity
is calibrated as methods in Sec. 4.1 and shown in Fig. 7(a). For comparison, we also generate
4-foci of the same spatial localizations but equal intensities. By loading the calculated phase
and driving the scanner, 4 planes (80/140/200/260 µm under the dura, respectively) are imaged
simultaneously at 30 Hz without moving the sample or objective axially. The locations of neurons
are recorded by scanning the four planes sequentially by a single focus, as shown in Fig. 7(b).
The temporal standard deviation projections (SDPs) of the recorded image sequences are shown
in Fig. 7(c) and Fig. 7(d), respectively. Because of the optimized intensity distribution of our
4-foci, both shallow planes and deeper planes have comparable SNRs, which cannot be achieved
by 4-foci excitation of uniform intensities.

Fig. 7. High-fidelity multi-depth calcium recording in vivo. (a) The 4-foci of exponential-
increasing intensities (L = 4, ∆zl = 60 µm, s = 170 µm) generated by AdaPS. (b) Depth map
of neurons in the FOV, composed of the temporal SDPs of each plane (80/140/200/260 µm
under the dura) that scanned by a single focus. Scale bar, 100 µm. (c) and (d) are the temporal
SDPs of simultaneous 4-plane imaging scanned by 4-foci of exponential-increasing intensities
and uniform intensities, respectively. (e) The 517 spatial components (7/87/282/141 in each
plane) extracted by CNMF. (f) Representative normalized dF/F traces on plane 3 (cyan) and
plane 4 (purple), recorded by 4-foci of exponential-increasing intensities (left panel) and
uniform intensities (right panel), respectively. (g) SNRs of the traces on plane 3 and plane 4
(328 out of 423 spatial components, with SNR> 0) are plotted to indicate that our 4-foci of
exponential-increasing intensities can record calcium dynamics in high fidelity.

We further extracted corresponding calcium traces to demonstrate that our multi-foci excitation
of exponential-increasing intensities designed for scattering compensation is helpful in improving
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trace SNR. Our data analysis pipeline includes motion correction using NoRMCorre [29] and
source extraction based on constrained non-negative matrix factorization (CNMF) [30], which is
generally adopted in demixing spatially overlapping components. Totally 517 source components
are extracted, and the spatial contours are shown in Fig. 7(e). We plot the temporal traces of 10
representative spatial components on plane 3 (200 µm depth, in cyan) and plane 4 (260 µm depth,
in purple) in Fig. 7(f). The two panels are recorded by exponential-increasing intensities (left)
and uniform intensities (right), respectively. Trace SNRs are obviously improved, which means
that neural activities can be revealed in high fidelity by AdaPS. For a more general analysis,
we calculate the trace SNRs of each spatial components on the two planes (plane 3 and plane
4) according to the formulas as described in [31]. Traces with SNR below zero are discarded
because they are severely affected by shot noise. All the non-negative SNRs are sorted and plotted
in Fig. 7(g). On average, the SNR of calcium traces recorded by our exponential-increasing
4-foci is improved by 2dB, benefiting from the optimized power distribution of our method. Such
improvement shows the capability of AdaPS to enable high-fidelity calcium imaging in scattering
tissues under limited illumination power.

5. Conclusion

In summary, we demonstrate a novel technique to generate axial multi-foci with arbitrary intensity
modulations. By introducing Adam as the optimization method, our algorithm could guarantee
fast and accurate convergence to the expected phases, regardless of focus number, focus interval,
and energy distribution, which is difficult for other algorithms. We demonstrate that AdaPS
enables uniform axial multi-depth imaging in scattering phantoms, as well as high-fidelity
multi-layer calcium recording in mouse brain in vivo. It should be noted that our proposed method
could also be adopted in lateral multi-foci generation and 3D computer-generated holography.
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